How do universe create something out of nothing full explanation ?
Answers
Answer:
Some physicists think they can explain why the universe first formed. Our entire cosmos may have sprung out of nothing at all. ... This idea may sound bizarre, or just another fanciful creation story.
Answer:
In recent years a few physicists and cosmologists have started to tackle it. They point out that we now have an understanding of the history of the universe, and of the physical laws that describe how it works. That information, they say, should give us a clue about how and why the cosmos exists.
Their admittedly controversial answer is that the entire universe, from the fireball of the Big Bang to the star-studded cosmos we now inhabit, popped into existence from nothing at all. It had to happen, they say, because "nothing" is inherently unstable.
This idea may sound bizarre, or just another fanciful creation story. But the physicists argue that it follows naturally from science's two most powerful and successful theories: quantum mechanics and general relativity.
Here, then, is how everything could have come from nothing.
Particles from empty space
First we have to take a look at the realm of quantum mechanics. This is the branch of physics that deals with very small things: atoms and even tinier particles. It is an immensely successful theory, and it underpins most modern electronic gadgets.
Quantum mechanics tells us that there is no such thing as empty space. Even the most perfect vacuum is actually filled by a roiling cloud of particles and antiparticles, which flare into existence and almost instantaneously fade back into nothingness.
These so-called virtual particles don't last long enough to be observed directly, but we know they exist by their effects.
Space-time, from no space and no time
From tiny things like atoms, to really big things like galaxies. Our best theory for describing such large-scale structures is general relativity, Albert Einstein's crowning achievement, which sets out how space, time and gravity work.
Relativity is very different from quantum mechanics, and so far nobody has been able to combine the two seamlessly. However, some theorists have been able to bring the two theories to bear on particular problems by using carefully chosen approximations. For instance, this approach was used by Stephen Hawking at the University of Cambridge to describe black holes.
One thing they have found is that, when quantum theory is applied to space at the smallest possible scale, space itself becomes unstable. Rather than remaining perfectly smooth and continuous, space and time destabilize, churning and frothing into a foam of space-time bubbles.
In other words, little bubbles of space and time can form spontaneously. "If space and time are quantized, they can fluctuate," says Lawrence Krauss at Arizona State University in Tempe. "So you can create virtual space-times just as you can create virtual particles."
What's more, if it's possible for these bubbles to form, you can guarantee that they will. "In quantum physics, if something is not forbidden, it necessarily happens with some non-zero probability," says Alexander Vilenkin of Tufts University in Boston, Massachusetts.
So it's not just particles and antiparticles that can snap in and out of nothingness: bubbles of space-time can do the same. Still, it seems like a big leap from an infinitesimal space-time bubble to a massive universe that hosts 100 billion galaxies. Surely, even if a bubble formed, it would be doomed to disappear again in the blink of an eye?
So it's not just particles and antiparticles that can snap in and out of nothingness: bubbles of space-time can do the same. Still, it seems like a big leap from an infinitesimal space-time bubble to a massive universe that hosts 100 billion galaxies. Surely, even if a bubble formed, it would be doomed to disappear again in the blink of an eye?