how do we prepare oxygen gas in lab by an experiment
Answers
Answer:
To Make Oxygen in Lab
hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Explanation:
HoPe it Helps you
Answer:
Oxygen is the most abundant element on earth. It is found almost in everything in nature and also in free state.
Laboratory Preparation of Oxygen
Oxygen can be prepared in a number of ways in the laboratory. These include:
(a). Heating a mixture of potassium trioxochlorate(V), KClO3 and maganese(IV) oxide, MnO2.
The MnO2 acts as a catalyst. The reaction is actually the decomposition of KClO3.
2KClO3(s) → 2KCl(s) + 3O2(g)
(b). The decomposition of hydrogen peroxide, H2O2 using manganese(IV) oxide - this does not require heating.
Hydrogen peroxide is added drop wisely unto MnO2.
2H2O2(aq) → 2H2O(l) + O2(g)
Or by the drop wise addition of hydrogen peroxide on acidified KMnO4
5H2O2(aq) + 2KMnO4(aq) + 3H2SO4(aq) → K2SO4(aq) + 2MnSO4(aq) + 8H2O(l) + 5O2(g)
(c). The reaction between water and sodium peroxide.
Hydrogen peroxide is formed, and it immediately decomposes by the catalytic effect of the OH- ions in solution.
Na2O2(s) + 2H2O → H2O2 + 2Na+ + 2OH-
Then, 2H2O2 → 2H2O + O2
(d). Application of heat on trioxonitrate(V) salts of metals.
Trioxonitrate(V) salts of metals, e.g, sodium trioxonitrate(V), NaNO3 give off a part of their oxygen upon being heated. NaNO3 loses one third of its oxygen.
2NaNO3(s) → 2NaNO2(s) + O2(g)
(e). Application of heat on certain oxides of the least active metals, e.g., mercury oxide, HgO and silver oxide, Ag2O. These oxides undergo complete dissociation when heated.
2HgO(s) → 2Hg(s) + O2(g)
2Ag2O(s) → 4Ag(s) + O2(g)
(f). Application of heat on oxides of certain metals with more than one oxidation state, e.g., lead(IV) oxide, PbO2 and mangan- ese(IV) oxide, MnO2.
These oxides give off only a part of their oxygen when they are heated. Such reactions usually require very high temperatures.
2PbO2(s) → 2PbO(s) + O2(g)
3MnO2(s) → Mn3O4(s) + O2(g)
(g). The electrolysis of water.
Oxygen is produced at the anode - see the electrolysis of water for details.