Physics, asked by varshachandel1317, 9 months ago

How do we solve the question of limits in physics where limit of x is 0​

Answers

Answered by Anmolabd
5

Explanation:

How do we solve the question of limits in physics where limit of x is 0

Here's a handy dandy flow chart to help you calculate limits.

A flow chart has options A through H, as follows. Step A, direct substitution. Try to evaluate the function directly. Evaluating f of a leads to options B through D. Option B: f of a = start fraction b divided by 0 end fraction, where b is not zero. The result is asymptote (probably). Example: the limit of start fraction 1 divided by x minus 1 end fraction as x approaches 1. Inspect with a graph or table to learn more about the function at x = a. Option C: f of a = b, where b is a real number. The result is limit found (probably). Example: limit of x squared as x approaches 3 = 3 squared = 9. Option D: f of a = start fraction 0 divided by 0 end fraction. Result is indeterminate form. Example: limit of start fraction x squared minus x minus 2 divided by x squared minus 2 x minus 3 end fraction, as x approaches negative 1. If you obtained option D, try rewriting the limit in an equivalent form. This leads to options E through G. Option E: factoring. Example: limit of start fraction x squared minus x minus 2 divided by x squared minus 2 x minus 3 end fraction, as x approaches negative 1 can be reduced to the limit of start fraction x minus 2 divided by x minus 3 end fraction as x approaches negative 1, by factoring and cancelling. Option F: conjugates. Example: the limit of start fraction start square root x end square root minus 2 divided by x minus 4 end fraction as x approaches 4 can be rewritten as the limit of start fraction 1 divided by start square root x end square root + 2 end fraction as x approaches 4, using conjugates and cancelling. Option G: trig identities. Example: limit of start fraction sine of x divided by sine of 2 x end fraction as x approaches 0 can be rewritten as the limit of start fraction 1 divided by 2 cosine of x end fraction as x approaches 0, using a trig identity. Using options E through G, try evaluating the limit in its new form, circling back to A, direct substitution. The last option is H, approximation: when all else fails, graphs and tables can help approximate limits.

Key point #1: Direct substitution is the go-to method. Use other methods only when this fails, otherwise you're probably doing more work than you need to be. For example, it would be extra work to factor an expression into a simpler form if direct substitution would have worked without the factoring.

Key point #2: There's a big difference between getting b/0b/0b, slash, 0 and 0/00/00, slash, 0 (where b\neq 0b=0b, does not equal, 0). When you get b/0b/0b, slash, 0, that indicates that the limit doesn't exist and is probably unbounded (an asymptote). In contrast, when you get 0/00/00, slash, 0, that indicates that you don't have enough information to determine whether or not the limit exists, which is why it's called the indeterminate form. If you wind up here, you've got more work to do, which is where the bottom half of the flow chart comes into play.

Note: There's a powerful method for finding limits called l'Hôpital's rule, which you'll learn later on. It's not covered here because we haven't learned about derivatives yet.

Similar questions