Math, asked by maryrosemartus3509, 1 year ago

How do you evaluate 4√112 +5√56 - 9√126?

Answers

Answered by CEOEkanshNimbalkar
1

Answer : -21.27615

Step by step explanation :

4 \sqrt{112}  + 5 \sqrt{56}  - 9 \sqrt{126}

Simplify the roots.

Factor out the perfect square.

 =  > 4 \sqrt{4 {}^{2}  \times 7}  + 5 \sqrt{56}  - 9 \sqrt{126}

The root of a product is equal to the product of the roots of each factor.

 =  > 4 \sqrt{4 {}^{2} }  \sqrt{7}  + 5 \sqrt{56}  - 9 \sqrt{126}

Reduce the index of the radical and exponent with 2

 =  > 4 \times 4 \sqrt{7}  + 5 \sqrt{56}  - 9 \sqrt{126}

Calculate the product

 =  > 16 \sqrt{7}  + 5 \sqrt{56}  - 9 \sqrt{126}

Simplify the radicle. Factor out the perfect square.

 =  > 16 \sqrt{7}  + 5 \sqrt{2 {}^{2} \times 14 }  - 9 \sqrt{126}

The root of a product is equal to the product of the roots of each factor.

 =  > 16 \sqrt{7}  + 5 \sqrt{2 {}^{2} }  \sqrt{14}  - 9 \sqrt{126}

Reduce the index of the radical and exponent with 2

 =  > 16 \sqrt{7}  + 5 \times 2 \sqrt{14}   -  9 \sqrt{126}

Calculate the product

 =  > 16 \sqrt{7}  + 10 \sqrt{14}  - 9 \sqrt{126}

Simplify the radicle. Factor out the perfect square

 =  > 16 \sqrt{7}  + 10 \sqrt{14}  - 9 \sqrt{3 {}^{2} \times 14 }

The root of a product is equal to the product of the roots of each factor.

 =  > 16 \sqrt{7 }  + 10 \sqrt{14}  - 9 \sqrt{3 {}^{2} }  \sqrt{14}

Reduce the index of the radical and exponent with 2.

 =  >16 \sqrt{7}   + 10 \sqrt{14}  - 9 \times 3 \sqrt{14}

Calculate the product.

 =  > 16 \sqrt{7}  + 10 \sqrt{14}  - 27 \sqrt{14}

Collect the like terms by subtracting their coefficients

 =  > 16 \sqrt{7} (10 - 27) \sqrt{14}

Calculate the difference

 =  > 16 \sqrt{7}  - 17 \sqrt{14}

 =  >  - 21.27615

Similar questions