how do you evaluate this trigonometry sum?
Attachments:
Answers
Answered by
4
(sin35°.cos55° - cos35° .sin55°)/(cosec^210° - tan^280° )
now,
use formula
sin (A + B) = since. cosB + cosA.sinB
sec^2 X - tan^2 X = 1
=>sin (55° - 35° )/(sec^2 80° - tan^2 80° )
=> sin20°/1 = sin20°
now,
use formula
sin (A + B) = since. cosB + cosA.sinB
sec^2 X - tan^2 X = 1
=>sin (55° - 35° )/(sec^2 80° - tan^2 80° )
=> sin20°/1 = sin20°
Answered by
3
Answer:1
Step-by-step explanation:
sin 35 cos 55+cos 35 sin 55/cosec^2 10-tan^2 80
=sin 35 *sin (90-55)+cos 35*cos (90-55)/cosec^2 10-cot^2 (90-80)
=sin^2 35+cos^2 35/cosec^2 10-cot^2 10
=1/1
=1
Similar questions