How do you find all solutions in the interval [0,2pi) of the equation (cosx)2−2.6cosx−0.87=0?
Answers
Answered by
1
Answer:
For (0, 2pi)
pi/3, pi, (5pi)/3
Explanation:
Use trig identity:
sin x = 2sin (x/2).cos (x/2)
Solve the equation:
cos (x/2) - 2sin (x/2).cos (x/2) = 0
cos (x/2)((1 - 2sin (x/2) = 0
a. cos x/2 = 0 --> x/2 = pi/2, and x/2 = (3pi)/2 -->
x/2 = pi/2 --> x = pi
x/2 = (3pi)/2 --> x = 3pi (rejected because out of area)
b. (1 - 2sin (x/2) = 0
Trig table and unit circle -->
sin (x/2) = 1/2 --> x/2 = pi/6 and x/2 = (5pi)/6
x/2 = pi/6 --> x = pi/3
x/2 = (5pi)/6 --> x = (5pi)/3
Answers for (0, 2pi) pi/3, pi, (5pi)/3#
Similar questions