How do you find the dimensions of a rectangle whose perimeter is 52 m and whose area is 160 m?
Answers
answer
perimeter
2(l+b) =52m
l+b=26 ...........................(i)[given]
area
lxb=160m^2 ..........................(ii)[given]
l=160/b ..........................(iii)
Substituting (iii) in (i),we get
(160/b)+b=26
(160+b^2)/b=26
b^2-26b+160=0
sum=-26
product=160
pair of numbers =-10,-16
by splitting the middle term
b^2-16b-10b+160=0
b[b-16]-10[b-16]=0
(b-10)(b-16)=0
b=10;b=16
Case 1:-If b=10
l=160/10 [from(iii)]
l=16m
Case 2:-If b=16
l=160/16 [from(iii)]
l=10m
but length is usually greater than breadth
THUS,
l=16m and b=10m