Math, asked by Mrinal8972, 11 months ago

How do you find the exact value of cot(u+v) given that sinu=513 and cosv=−35?

Answers

Answered by arjun6068
0

Explanation:

Find cosu using Pythagorean Theorem to find the adjacent side. Assume angle u is in the first quadrant:

132=52+a2

a2=169−25=144

a=12

So cosu=1213

Find sinv using Pythagorean Theorem to find the adjacent side. Assume angle v is in the second quadrant:

(−3)2+b2=52

b2=25−9=16

b=4

So sinv=45

Use the difference formula cos(u−v)=cosucosv+sinusinv:

cos(u−v)=1213⋅−35+513⋅45=−3665+2065=−1665

.հօթҽ íԵ հҽlթs վօմ 

Answered by brunoconti
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions