Math, asked by rawalrajat5, 14 hours ago

how do you get the last equation from the upper 3 ?​

Attachments:

Answers

Answered by Anonymous
16

Given :-

  •  x_1 + x_2 = 2 . . . eq (i)
  •  x_2 + x_3 = 0 . . . eq (ii)
  •  x_3 + x_1 = 4 . . . eq (iii)

To Derive :-

  •  x_1 + x_2 + x_3 = 3

Solution :-

  \longrightarrow \:  \sf \: x_1 + x_2 = 2 \:  \: \:  \: \:  \: \:  \:\:  \:  \:  \: \\  \longrightarrow \:  \sf \:x_2 = 2 - x_1. . . eq (iv)

Now, we will put the value of  x_2 from equation iv in equation (ii), we get,

 \sf \longrightarrow \: 2 - x_1 + x_3 = 0  \:  \: \:  \: \:  \: \\ \sf \longrightarrow \: x_3 = 2 + x_1  . . . eq (v)

Now, we will put the value of  x_3 in eq. (iii) from eq. (v), so,

 \sf \longrightarrow \: 2 +x_1 + x_1 = 4   \\\sf \longrightarrow \: 2x_1 = 4 + 2 \:  \:  \:  \:  \:  \:  \:  \\ \sf \longrightarrow \:x_1 =  \frac{6}{2}  = 3 \:  \:  \:  \:  \:  \:  \:

Now, we will put the value of  x_1 in eq (i) to obtain the value of  x_2,so,

 \sf \longrightarrow \: 3 + x_2 = 2 \\  \sf \longrightarrow \:x_2 = 2 - 3 \\ \sf \longrightarrow \:x_2 =   - 1 \:  \:  \:  \:

Now, we will put the value of  x_2 in eq. (ii) to obtain the value of  x_3 , so,

\sf \longrightarrow \: - 1 + x_3= 0 \\ \sf \longrightarrow \:x_3 = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore,

  •  x_1 = 3
  •  x_2 = - 1
  •  x_3 = 1

Now,on adding these we get,

 \sf \longrightarrow \: x_1 + x_2 + x_3 \:  \:  \\ \sf \longrightarrow \:3 + ( - 1) + 1 \\  \sf \longrightarrow \:3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence, we got the required equation!

 \color{yellow} \bigstar \:  \color{lavenderblush}{  \underline{\underline{ \boxed {\sf { \therefore\: x_1 + x_2 + x_3 = 3}}}}}

Answered by 231001ruchi
0

</p><p>x_1 + x_2 = 2x1+x2=2 . . . eq (i)</p><p></p><p>x_2 + x_3 = 0x2+x3=0 . . . eq (ii)</p><p></p><p>x_3 + x_1 = 4x3+x1=4 . . . eq (iii)</p><p></p><p>⠀</p><p>

Similar questions