How do you prove sin(A+B) * sin(A-B) = sin2 A - sin2 B?
Answers
Answered by
2
Step-by-step explanation:
Proof
We know that formula for sin(A+B) = sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
Also sin(−B)=−sin(B)
cos(−B)=cos(B), so
sin(A−B)=sin(A)cos(B)−cos(A)sin(B)
Therefore sin(A+B)⋅sin(A−B)
=(sinAcosB+cosAsinB)(sinAcosB−cosAsinB)
=(sinAcosB)2−(cosAsinB)2
Now will use the identity (a+b)(a−b)=a2 – b2 in the above equation
=sin2Acos2B−sin2Bcos2A
=sin2A(1−sin2B)−sin2B(1−sin2A)
Now we know that sin2θ+cos2θ=1 ( By Pythagoras theorem)
=sin2A−sin2B−sin2A sin2B+sin2Bsin2A
=sin2A−sin2B
sin(A+B) sin(A-B) = sin2 A – sin2 B
Answered by
1
Attachments:


Similar questions