Math, asked by emilmanoj, 8 months ago

How do you prove that the diagonals pf a parallelogram bisect each other??​

Answers

Answered by Anonymous
3

Answer:

Expert Answer:

ABCD is a parallelogram, diagonals AC and BD intersect at O.

In triangles AOD and COB,

DAO = BCO (alternate interior angles)

AD = CB.

ADO = CBO (alternate interior angles)

AOD COB (ASA)

Hence, AO = CO and OD = OB (c.p.c.t)

Thus, the diagonals of a parallelogram bisect each other.

Answered by bubloo10
2

Answer:

Step-by-step explanation:

ABCD is a parallelogram, diagonals AC and BD intersect at O

In triangles AOD and COB,

DAO = BCO                               (alternate interior angles)

AD = CB

ADO = CBO                               (alternate interior angles)

AOD COB                           (ASA)

Hence, AO = CO and OD = OB          (c.p.c.t)

Thus, the diagonals of a parallelogram bisect each other.

Attachments:
Similar questions