Math, asked by cpage22, 2 months ago

How do you prove this trigonometric expression show your work on paper

Attachments:

Answers

Answered by StormEyes
8

Solution!!

\sf \cos ^{2}\theta =\dfrac{\csc \theta \times \cos \theta }{\tan \theta + \cot \theta }

Taking RHS

\sf =\dfrac{\csc \theta \times \cos \theta }{\tan \theta + \cot \theta }

Use the following relations to transform the expressions:

\sf \csc \theta = \dfrac{1}{\sin \theta }

\sf \tan \theta = \dfrac{\sin \theta }{\cos \theta }

\sf \cot \theta = \dfrac{\cos \theta }{\sin \theta }

\sf =\dfrac{\frac{1}{\sin \theta }\times \cos \theta }{\frac{\sin \theta }{\cos \theta }+\frac{\cos \theta }{\sin \theta }}

Calculate the product.

\sf =\dfrac{\frac{\cos \theta }{\sin \theta }}{\frac{\sin \theta }{\cos \theta }+\frac{\cos \theta }{\sin \theta }}

Write all the numerators above the common denominator.

\sf =\dfrac{\frac{\cos \theta }{\sin \theta }}{\frac{\sin ^{2}\theta + \cos ^{2}\theta }{\cos \theta \sin \theta }}

Use the following to simplify the expression:

\sf \sin ^{2}\theta + \cos ^{2}\theta =1

\sf =\dfrac{ \frac{\cos \theta }{\sin \theta }}{\frac{1}{\cos \theta \sin \theta }}

Simplify the complex fraction.

\sf =\cos \theta \times \cos \theta

\sf =\cos ^{2}\theta

LHS = RHS

Hence, proved.

Similar questions