Math, asked by ankurpanwar17031, 1 year ago

How do you simplify [(1+i)4(2−2i)3]?

Answers

Answered by amitnrw
0

Answer:

(1+i)⁴(2−2i)³ = 64(1 + i)

Step-by-step explanation:

(1+i)⁴(2−2i)³

= ((1 + i)²)²(2³)(1 -i)³

= ((1 + i)²)²(2³)(1 -i)²(1-i)

= 8 ( 1 + i² + 2i)² (1 + i² - 2i) ( 1 - i)

i² = -1

= 8( 1 - 1 + 2i)² (1 - 1 -2i) (1 - i)

= 8 (2i)²(-2i)( 1-i)

= 8 * 4i² (-2i)( 1-i)

= 32 (-1)(-2i) ( 1 - i)

= 64 i ( 1 - i)

= 64 i - 64i²

= 64i + 64

= 64 + 64 i

= 64(1 + i)

Answered by MaheswariS
0

Answer:

(1+i)^4(2-2i)^3=64(1+i)

Step-by-step explanation:

Formula used:

(a+b)(a-b)=a^2-b^2

i=\sqrt{-1}

Given:

(1+i)^4(2-2i)^3

=(1+i)(1+i)^3\:2^3\:(1-i)^3

=8(1+i)[(1+i)^3(1-i)^3]

=8(1+i)[(1+i)(1-i)]^3

=8(1+i)[1^2-i^2]^3

=8(1+i)[1+1]^3

=8(1+i)[2]^3

=8(1+i)[8]

=64(1+i)

Similar questions