Math, asked by venkadesh7117, 4 months ago

how do you solve 81^x+6 = 243^2x+5

Answers

Answered by BrainlyPopularman
20

GIVEN :

 \\ \implies \bf {(81)}^{x+ 6} ={(243)}^{2x+5}  \\

TO FIND :

• Value of 'x' = ?

SOLUTION :

 \\ \implies \bf {(81)}^{x+ 6} ={(243)}^{2x+5}  \\

• We should write this as –

 \\ \implies \bf {( {3}^{4} )}^{x+ 6} ={({3}^{5})}^{2x+5}  \\

 \\ \implies \bf {(3)}^{4(x+ 6)} ={(3)}^{5(2x+5)}  \\

 \\ \implies \bf {(3)}^{4x+24} ={(3)}^{10x+25}  \\

• Now let's compare –

 \\ \implies \bf 4x+24=10x+25\\

 \\ \implies \bf 4x - 10x=25 - 24\\

 \\ \implies \bf (4 - 10)x=25 - 24\\

 \\ \implies \bf ( - 6)x=25 - 24\\

 \\ \implies \bf ( - 6)x=1\\

 \\ \implies \bf - 6x=1\\

 \\ \implies \large{ \boxed{ \bf x= -\dfrac{1}{6}}}\\

Answered by diajain01
46

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer \:  \: is \:  \: as \: follows:-}}}}}

◉GIVEN:-

  •  \tt{81^{x+6} = 243^{2X+5}}

◉TO FIND:-

  • x

SOLUTION:-

 \leadsto \tt{81^{x+6} = 243^{2X+5}}

 \leadsto \:  \tt{ {( {3}^{4})}^{x + 6}  =  {( {3}^{5})}^{2x + 5}  }

 \leadsto \tt{ {3}^{4x + 24}  =  {3}^{10x + 25} }

Comparing the powers.

 \leadsto \tt{4x + 24 = 10x + 25}

 \leadsto \tt{24 - 25 = 10x - 4x}

 \leadsto \tt{6x =  - 1}

:  \implies \:  { \boxed{ \underline{ \purple{ \mathbb{x =  \frac{ - 1}{6} }}}}}

HOPE IT HELPS

Similar questions