Math, asked by tapasarapur5783, 1 year ago

How do you solve the quadratic with complex numbers given 27c2−12c−314=0?

Answers

Answered by dna63
0

27c {}^{2}  - 12c - 314 = 0 \\  =  >  (\sqrt{27} c) {}^{2}  - 2 \times  \sqrt{27} c \times  \frac{6}{ \sqrt{27} }  + (\frac{6}{ \sqrt{27} }) {}^{2} - 314  = (\frac{6}{ \sqrt{27} }) {}^{2} \\  =  > ( \sqrt{27} c -  \frac{6}{ \sqrt{27} } ) {}^{2}  - 314 =  \frac{36}{27}  \\  =  >  ( \sqrt{27} c -  \frac{6}{ \sqrt{27} } ) {}^{2} =  \frac{36}{27}  + 314 \\  =  > ( \sqrt{27} c -  \frac{6}{ \sqrt{27} } ) {}^{2} =  \frac{36 + 8478}{27}  \\  =  > ( \sqrt{27} c -  \frac{6}{ \sqrt{27} } ) {}^{2}=  \frac{8514}{27}  \\  =  > ( \sqrt{27} c -  \frac{6}{ \sqrt{27} } ) {}^{2} =  \frac{946}{3}  \\  = >  \sqrt{27} c -  \frac{6}{3 \sqrt{3} }  =  ( \frac{ + }{ - } ) \sqrt{ \frac{946}{3} }  \\  =  >  \sqrt{27} c =  \frac{2}{ \sqrt{3} } ( \frac{ + }{ - } )\sqrt{ \frac{946  }{3} } \\   =  >  \sqrt{27} c =  \frac{2}{ \sqrt{3} }  (\frac{ + }{ - } ) \frac{ \sqrt{946} }{ \sqrt{3} }  \\  =  > 3 \sqrt{3} c =  \frac{2( +  - ) \sqrt{946} }{ \sqrt{3} }  \\  =  > c =  \frac{2( + -  ) \sqrt{946} }{ \sqrt{3}  \times 3 \sqrt{3} } \\  =  > c =  \frac{2( +  - ) \sqrt{946} }{9}  \\  =  > c =  \frac{2 +  \sqrt{946} }{9}  \: or \: c =  \frac{2 -  \sqrt{946} }{9}  \: ans...

Hope it helps you.. please mark it as Brainliest answer..

Similar questions