Math, asked by parkashphulkan9337, 2 months ago

how do you solve x for cosec(x)-sin(x)=cos(x).cot(3x-50)

Answers

Answered by pulakmath007
8

SOLUTION

TO SOLVE

cosec x - sin x = cos x cot ( 3x - 50 )

EVALUATION

cosec x - sin x = cos x cot ( 3x - 50 )

 \displaystyle \sf{ \implies \:  \frac{1}{ \sin x}  -  \sin x =  \cos x \cot (3x - 50)}

 \displaystyle \sf{ \implies \:  \frac{1 -  { \sin}^{2}x }{ \sin x}   =  \cos x \cot (3x - 50)}

 \displaystyle \sf{ \implies \:  \frac{  { \cos}^{2}x }{ \sin x \: \cos x  }   = \cot (3x - 50)}

 \displaystyle \sf{ \implies \:  \frac{  { \cos}^{}x }{ \sin x   }   = \cot (3x - 50)}

 \displaystyle \sf{ \implies \:   \cot x= \cot (3x - 50)}

 \displaystyle \sf{ \implies \:   x=  (3x - 50)}

 \displaystyle \sf{ \implies \:  2 x=  50}

 \displaystyle \sf{ \implies \:  x=  25}

FINAL ANSWER

Hence the required value of x = 25

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that (1+cos18)(1+cos54)(1+cos126)(1+cos162)=1÷16

https://brainly.in/question/29235086

2. Find the value of cot (-3155°)

https://brainly.in/question/6963315

Similar questions