Math, asked by adas162, 1 year ago

How do you verify sinθcosθtanθ+cos2θ=1?

Answers

Answered by Narutsu
0

I am writing theta as x

 \sin(x)  \cos(x)  \tan(x)   + { \cos(x) }^{2}

 \sin(x)   \cos(x )  \times  \frac{ \sin(x) }{ \cos(x) }  +  { \cos(x) }^{2}

 \sin(x)  \times  \sin(x)  +  { \cos(x) }^{2}

 { \sin(x) }^{2}  +  { \cos(x) }^{2}

Since sin^2 a+ cos^2 a= 1

 = 1 = rhs

Similar questions