Math, asked by Ajay9921, 1 year ago

How do you verify (sinx)(tanxcosx−cotxcosx)=1−2cos2x?

Answers

Answered by Anonymous
0

l.h.s =( sinx)(tanx.cosx - cotx.cosx)  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = sinx.tanx.cosx - sinx.cotx.cosx \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = sinx. \frac{sinx}{cosx} .cosx - sinx. \frac{cosx}{sinx}.cosx  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {sin}^{2}x -  {cos}^{2} x \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 - cos2x}{2}   \:  -  \frac{1 + cos2x}{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 - cos2x - 1 - cos2x}{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ - 2cos2x}{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - cos2x \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions