Computer Science, asked by naseermazen20, 6 months ago

How does Data mining relate to KDD (similarity), and what is the difference between them?

Answers

Answered by manasanalli
2

Answer:

KDD is the overall process of extracting knowledge from data while Data Mining is a step inside the KDD process, which deals with identifying patterns in data. In other words, Data Mining is only the application of a specific algorithm based on the overall goal of the KDD process.

HOPE IT HELPS U

Explanation:

FOLLOW MY ACCOUNT PLS PLS

Answered by ajha29884
3

Answer:

KDD is the overall process of extracting knowledge from data while Data Mining is a step inside the KDD process, which deals with identifying patterns in data. In other words, Data Mining is only the application of a specific algorithm based on the overall goal of the KDD process.

Explanation:

KDD vs Data mining

KDD (Knowledge Discovery in Databases) is a field of computer science, which includes the tools and theories to help humans in extracting useful and previously unknown information (i.e. knowledge) from large collections of digitized data. KDD consists of several steps, and Data Mining is one of them. Data Mining is application of a specific algorithm in order to extract patterns from data. Nonetheless, KDD and Data Mining are used interchangeably.

What is KDD?

As mentioned above, KDD is a field of computer science, which deals with extraction of previously unknown and interesting information from raw data. KDD is the whole process of trying to make sense of data by developing appropriate methods or techniques. This process deal with the mapping of low-level data into other forms those are more compact, abstract and useful. This is achieved by creating short reports, modeling the process of generating data and developing predictive models that can predict future cases. Due to the exponential growth of data, especially in areas such as business, KDD has become a very important process to convert this large wealth of data in to business intelligence, as manual extraction of patterns has become seemingly impossible in the past few decades. For example, it is currently been used for various applications such as social network analysis, fraud detection, science, investment, manufacturing, telecommunications, data cleaning, sports, information retrieval and largely for marketing. KDD is usually used to answer questions like what are the main products that might help to obtain high profit next year in Wal-Mart?. This process has several steps. It starts with developing an understanding of the application domain and the goal and then creating a target dataset. This is followed by cleaning, preprocessing, reduction and projection of data. Next step is using Data Mining (explained below) to identify pattern. Finally, discovered knowledge is consolidates by visualizing and/or interpreting.

I HOPE YOU LIKE

TAG ME A BRILLIANT

Similar questions