How does elecronic circuit simulator work?
Answers
Answered by
2
yo!
I've examined the code of the Falstad simulator in some detail. For circuits which consist only of linear components like resistors, switches, and voltage sources (things like logic-gate outputs are considered ground-connected voltage sources for purposes of the simulation) the simulator regards each circuit node, voltage source (connecting two nodes), or wire (likewise) as defining a linear equation and a variable, such that the number of equations and number of variables are always equal. For a circuit node, the variable is the voltage of the node, and the equation computes the total current flowing through it equal to the total current injected by any current sources. For a voltage source or wire (a wire being handled as a voltage source where the potential difference is zero), the equation sets the voltage difference between the two circuit node voltages equal to the required voltage difference, and the variable is the amount of current flowing through the voltage source from one node to the other.
Things like current sources and resistors are not associated with resistors or variables. Instead, current sources increase the total current required for one circuit node (remember each circuit node has an equation which evaluates the total current flowing in and out) and decrease it for the other. Resistors are a little trickier: for each endpoint's equation, the resistor adds terms for the node voltage of each endpoint.
hope it helps uh!
I've examined the code of the Falstad simulator in some detail. For circuits which consist only of linear components like resistors, switches, and voltage sources (things like logic-gate outputs are considered ground-connected voltage sources for purposes of the simulation) the simulator regards each circuit node, voltage source (connecting two nodes), or wire (likewise) as defining a linear equation and a variable, such that the number of equations and number of variables are always equal. For a circuit node, the variable is the voltage of the node, and the equation computes the total current flowing through it equal to the total current injected by any current sources. For a voltage source or wire (a wire being handled as a voltage source where the potential difference is zero), the equation sets the voltage difference between the two circuit node voltages equal to the required voltage difference, and the variable is the amount of current flowing through the voltage source from one node to the other.
Things like current sources and resistors are not associated with resistors or variables. Instead, current sources increase the total current required for one circuit node (remember each circuit node has an equation which evaluates the total current flowing in and out) and decrease it for the other. Resistors are a little trickier: for each endpoint's equation, the resistor adds terms for the node voltage of each endpoint.
hope it helps uh!
Answered by
0
Answer:
Electronic circuit simulation uses mathematical models to replicate the behavior of an actual electronic device or circuit. Simulation software allows for modeling of circuit operation and is an invaluable analysis tool. The most well known analog simulator is SPICE.
Explanation:
HOPE THIS ANSWER HELPS YOU, PLEASE MARK ME AS BRAINLIEST.
Similar questions