Math, asked by mah1anasharini, 1 year ago

How does heron derive the formula of area of triangle?

Answers

Answered by shaswikaa
1

For a triangle of given three sides, say a, b, and c, the formula for the area is given by
 

A=s(s−a)(s−b)(s−c)−−−−−−−−−−−−−−−−−A=s(s−a)(s−b)(s−c)

 

where s is the semi perimeter equal to P/2 = (a + b + c)/2.
 

Derivation of Heron's Formula
Area of triangle ABC
A=12bhA=12bh       → equation (1)
 

From triangle ADB
x2+h2=c2x2+h2=c2

x2=c2h2x2=c2h2

x=c2h2−−−−−−x=c2h2
 

From triangle CDB
(b–x)2+h2=a2(b–x)2+h2=a2

(b–x)2=a2h2(b–x)2=a2h2

b2–2bx+x2=a2h2b2–2bx+x2=a2h2
 

Substitute the values of x and x2
b2–2bc2h2−−−−−−+(c2h2)=a2h2b2–2bc2h2+(c2h2)=a2h2

b2+c2a2=2bc2h2−−−−−−b2+c2a2=2bc2h2
 

Square both sides
(b2+c2a2)2=4b2(c2h2)(b2+c2a2)2=4b2(c2h2)

(b2+c2a2)24b2=c2h2(b2+c2a2)24b2=c2h2

h2=c2(b2+c2a2)24b2h2=c2(b2+c2a2)24b2

h2=4b2c2−(b2+c2a2)24b2h2=4b2c2−(b2+c2a2)24b2

h2=(2bc)2−(b2+c2a2)24b2h2=(2bc)2−(b2+c2a2)24b2

h2=[2bc+(b2+c2a2)][2bc−(b2+c2a2)]4b2h2=[2bc+(b2+c2a2)][2bc−(b2+c2a2)]4b2

h2=[2bc+b2+c2a2][2bc−b2c2+a2]4b2h2=[2bc+b2+c2a2][2bc−b2c2+a2]4b2

h2=[(b2+2bc+c2)–a2][a2−(b2−2bc+c2)]4b2h2=[(b2+2bc+c2)–a2][a2−(b2−2bc+c2)]4b2

h2=[(b+c)2a2]⋅[a2−(b−c)2]4b2h2=[(b+c)2a2]⋅[a2−(b−c)2]4b2

h2=[(b+c)+a][(b+c)−a]⋅[a+(b−c)][a−(b−c)]4b2h2=[(b+c)+a][(b+c)−a]⋅[a+(b−c)][a−(b−c)]4b2

h2=(b+c+a)(b+c−a)(a+b−c)(a−b+c)4b2h2=(b+c+a)(b+c−a)(a+b−c)(a−b+c)4b2

h2=(a+b+c)(b+c−a)(a+c−b)(a+b−c)4b2h2=(a+b+c)(b+c−a)(a+c−b)(a+b−c)4b2

h2=(a+b+c)(a+b+c−2a)(a+b+c−2b)(a+b+c−2c)4b2h2=(a+b+c)(a+b+c−2a)(a+b+c−2b)(a+b+c−2c)4b2

h2=P(P−2a)(P−2b)(P−2c)4b2h2=P(P−2a)(P−2b)(P−2c)4b2   note: P = perimeter

h=P(P−2a)(P−2b)(P−2c)−−−−−−−−−−−−−−−−−−−−−−2bh=P(P−2a)(P−2b)(P−2c)2b
 

Substitute h to equation (1)
A=12bP(P−2a)(P−2b)(P−2c)−−−−−−−−−−−−−−−−−−−−−−2bA=12bP(P−2a)(P−2b)(P−2c)2b

A=14P(P−2a)(P−2b)(P−2c)−−−−−−−−−−−−−−−−−−−−−−A=14P(P−2a)(P−2b)(P−2c)

A=116P(P−2a)(P−2b)(P−2c)−−−−−−−−−−−−−−−−−−−−−−−−A=116P(P−2a)(P−2b)(P−2c)

A=P2(P−2a2)(P−2b2)(P−2c2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−A=P2(P−2a2)(P−2b2)(P−2c2)

A=P2(P2−a)(P2−b)(P2−c)−−−−−−−−−−−−−−−−−−−−−−−−−−A=P2(P2−a)(P2−b)(P2−c)
 

Recall that P/2 = s. Thus,

A=s(s−a)(s−b)(s−c)−−−−−−−−−−−−−−−−−
Similar questions