English, asked by bishtdisha522, 3 months ago

How does kezia begin to see her father as a human being who need her sympathy?​

Answers

Answered by abhaysihag26
6

Explanation:

Answer: When Kezia's mother falls sick she is feeling lonely. ... When her father falls asleep before her, she realizes that her father is also a human being and he too needs sympathy.

plz mark on biranlist

Answered by Anonymous
0

\large\underline{\sf{Given - }}

 \sf \: An \:  equation :  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\: having \: one \: root \: 1 + i

\begin{gathered}\begin{gathered}\sf \: To\: Find - \begin{cases} &\sf{remaining \: roots \: of \: equation}  \end{cases}\end{gathered}\end{gathered}

\sf\large\underline{Solution-}

Given equation is :-

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0

As we know that complex roots occur in conjugate pairs.Therefore, 1 - i will be the other root of the given equation.

\sf \red{\: \:\bigg( x - (1 + i)\bigg) \bigg(x - (1 - i) \bigg)}

 \sf \: :\implies   \: (x - 1 - i)(x - 1 + i)

 \sf \: :\implies  {(x - 1)}^{2}  -  {i}^{2}

 \sf \:  :\implies {x}^{2}  + 1 - 2x - ( - 1) \:  \:  \:  \:  \: ( \sf \red{\because \:  {i}^{2}  =  - 1)}

 \sf \:  :\implies {x}^{2}  - 2x + 2

 \sf \:\red{  {x}^{2}  - 2x + 2 }\: is \: a \: factor \: of \: given \: equation.

On Dividing :-

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2 \: by \:  {x}^{2}  - 2x + 2 \: we \: will  \: get \:

 \sf \: \pink{ {x}^{2}  + 4x + 1}

\sf \green {[For \: details \: see \: the \:attachment ]}

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\:

\sf :\implies\: ({x}^{2}   - 2x + 2)( {x}^{2}  + 4x + 1) = 0

\rm :\implies \: {x}^{2}  + 4x + 1 = 0

On comparing it with ax² + bx + c = 0, we have

  • a = 1

  • b = 4

  • c = 1

Roots of the equation is given by:-

 \sf :\implies\:\sf \: x \:  =  \: \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

\sf :\implies \:x \:  =  \: \dfrac{ - 4 \:  \pm \:  \sqrt{ {4}^{2}  - 4 \times 1 \times 1} }{2 \times 1}

\sf :\implies \:x = \dfrac{ - 4 \:  \pm \:  \sqrt{12} }{2}

\sf :\implies \:x = \dfrac{ - 4 \:  \pm \:  2\sqrt{3} }{2}

\sf :\implies \purple{ \:x \:  =  \:  - 2 \:  \pm \:  \sqrt{3} }

 \therefore \sf \: The \:  roots  \: of \: \sf \:   {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\: \: are

 \sf\purple{\:  1 + i},\red{ \: 1 - i},\green{ \:  - 2 +  \sqrt{3} } \: and\pink {\:  - 2 -  \sqrt{3}}

Similar questions
Math, 3 months ago