How does Si (OH)4 polymerization take place?
Answers
Answer:
Dissolved silica (SiO2) is supplied to the environment by chemical and biochemical weathering processes despite the fact that dissolved silica has many stable and unstable dissolved forms (silica species). The processes involve ion substitution and chelate forming reactions which remove mineral lattice cations. The concentration of dissolved silica in natural waters is determined by a buffering mechanism which is thought to require the sorption and desorption of dissolved silica by soil particles. For instance average concentration of silica in some groundwater like coal seam gas water ranges between 0.1 and 80.0 ml/L. The dissolution process of silica and silicates from rocks into water is mainly due to hydrolysis of silica-oxygen-silica bonds, resulting in the liberation of silicic acid (Si(OH)4) and silicates into aqueous phase. It is difficult to define precisely the term ‘aqueous silica’ as there is an array of silica species possible. Temperature, pH and ionic strength have a substantial influence on the solubility of amorphous silica and forms of silica present in a solution. This phenomenon of silica chemistry can be explained by presence of various silica species, which frequently define silica solubility and physicochemical reactions. It appears that some silica species behave as organics. For seawater the composition is relatively balanced; though, this might not explain low silica precipitation in seawater desalination.