How does temperature affect molecular movement?
Answers
Answer:
40 degree s that right or 20
Answer:
With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion. ... With an increase in temperature, the particles gain kinetic energy and vibrate faster and more strongly.
Explanation:
Complete step by step answer:
The effect of temperature on the movement of atoms and molecules are determined by the kinetic molecular theory. The kinetic molecular theory describes the behavior of the gases. It describes the properties of gases like pressure and temperature.
There are five assumptions in order to apply the kinetic model of gases.
(1) The gases are formed of particles which do not have definite volume but have defined mass.
(2) The gas particles do not have any intermolecular attraction or repulsion. This assumption shows that the particles do not have any potential energy and their total energy is equal to the kinetic energies.
(3) The gas particles are present in continuous random motion.
(4) The collision between the gas particles is elastic which means that no loss or gain of kinetic energy takes place when the gas molecule collides.
(5) The average kinetic energy for all gases is the same at a given temperature regardless of the identity of the gas. The kinetic energy is proportional to the absolute temperature of the gas.
It can be written as shown below.
...
K.E=12mv2=32KBT
Where,
K.E is the kinetic energy
m is the mass
V is the velocity
KB is the Boltzmann constant
T is the absolute temperature in kelvin.
The above given relation says that the speed of the gas is related to the absolute temperature. As the temperature increases the speed of the atom also increases and the total energy increases as well.