How does the metabolic phenotype of proliferating cells compare to that of differentiated, or no nonproliferating cells
Answers
Answered by
0
In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
For unicellular organisms such as microbes, there is evolutionary pressure to reproduce as quickly as possible when nutrients are available. Their metabolic control systems have evolved to sense an adequate supply of nutrients and channel the requisite carbon, nitrogen, and free energy into generating the building blocks needed to produce a new cell. When nutrients are scarce, the cells cease biomass production and adapt metabolism to extract the maximum free energy from available resources to survive the starvation period (Fig. 1). Reflecting these fundamental differences in metabolic needs, distinct regulatory mechanisms have evolved to control cellular metabolism in proliferating versus non-proliferating cells.
(PLZ MARK MY ANSWER AS BRAINLIST MY FRIEND)
For unicellular organisms such as microbes, there is evolutionary pressure to reproduce as quickly as possible when nutrients are available. Their metabolic control systems have evolved to sense an adequate supply of nutrients and channel the requisite carbon, nitrogen, and free energy into generating the building blocks needed to produce a new cell. When nutrients are scarce, the cells cease biomass production and adapt metabolism to extract the maximum free energy from available resources to survive the starvation period (Fig. 1). Reflecting these fundamental differences in metabolic needs, distinct regulatory mechanisms have evolved to control cellular metabolism in proliferating versus non-proliferating cells.
(PLZ MARK MY ANSWER AS BRAINLIST MY FRIEND)
Similar questions