How does this question "How is power used in our daily lives? What is meant by the interaction between speed and strength?" in the real world
Answers
Answer: hope this helps
The force-velocity curve is a physical representation of the inverse relationship between force and velocity. Understanding the interaction between force and velocity and their influences on exercise selection is vital for any strength and conditioning professional. For example, it is essential that a strength and conditioning coach understands the physiological and biomechanical differences between prescribing a 1RM deadlift and 5RM jump squats – as one will produce higher forces and lower velocities than the other. Failure to understand the relationship and its importance will likely lead to less than optimal training prescription.
Though the force-velocity curve may appear confusing and complicated, it is actually very straight-forward. The force-velocity curve is simply a relationship between force and velocity and can, therefore, be displayed on an x-y graph (Figure 1). The x-axis (i.e. horizontal axis) indicates velocity, for example, this may represent muscle contraction velocity, or velocity of movement (measured in meters per second). Whilst the y-axis (i.e. vertical axis) indicates force, for example, this may represent muscle contractile force, or the amount of ground reaction force produced (measured in Newtons).
The curve itself shows an inverse relationship between force and velocity, meaning that an increase in force would cause a decrease in velocity and vice versa. Giving an example, a one repetition maximum (1RM) Back Squat would produce high levels of force but would be lifted at a slow velocity. While a countermovement jump (CMJ) would produce a high movement velocity, it would also only produce low-levels of force. This indicates that there is a trade-off between force and velocity. That being, when an exercise produces high levels of force, it will also produce a slow movement velocity and vice versa.
This trade-off between force and velocity is thought to occur due to a decrease in the time available for cross bridges to be formed – more time, equals more cross bridges, and more cross bridges mean a greater contractile force (1). Therefore, slower velocity exercises allow the athlete to form more cross bridges and develop more force. Higher velocity exercises provide less time for cross bridges to form, and therefore results in lower force production. As a result, different exercises and intensities have been categorised into various segments on the force-velocity curve (Figure 1). In addition, Table 1 demonstrates the force and velocity differences between numerous exercises. Here try and note the force and velocity differences between the same exercises at various intensities.
Explanation:
plz mark me as brainleist!