Math, asked by maninderjit4967, 1 year ago

How factorise 125 x cube + 27 y cube + 8 Z cube minus 90 xyz

Answers

Answered by Kanupriya07
44
ans in the attachement....
Attachments:
Answered by pinquancaro
27

Answer:

The factories form of the expression is 125x^3+27y^3+8z^3-90xyz=(5x+3y+2z)(25x^2+9y^2+4z^2-15xy-6yz-10zx)          

Step-by-step explanation:

To find : How factories 125x^3+27y^3+8z^3-90xyz ?

Solution :

Expression 125x^3+27y^3+8z^3-90xyz

Using identity,

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

Re-write expression as,

(5x)^3+(3y)^3+(2z)^3-3(5x)(3y)(2z)

Here, a=5x, b=3y and c=2z

(5x)^3+(3y)^3+(2z)^3-3(5x)(3y)(2z)=(5x+3y+2z)((5x)^2+(3y)^2+(2z)^2-(5x)(3y)-(3y)(2z)-(2z)(5x))

125x^3+27y^3+8z^3-90xyz=(5x+3y+2z)(25x^2+9y^2+4z^2-15xy-6yz-10zx)

Therefore, The factories form of the expression is 125x^3+27y^3+8z^3-90xyz=(5x+3y+2z)(25x^2+9y^2+4z^2-15xy-6yz-10zx)

Similar questions