Chemistry, asked by Atharvaawajekar, 1 year ago

how fast an electron move if it have wavelength equal to distance travel in 1 sec

Answers

Answered by Rajdeepsingh192837
0
Good question! Let’s re-phrase it in terms of mathematical notation.

The DeBroglie relation tells us that the wavelength of a particle is given by Planck’s constant divided by its momentum, i.e.

λ=hp=hmv" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">λ=hp=hmvλ=hp=hmv

Now set this equal to the distance traveled in one second

λ=hm∗v=v∗(1second)" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">λ=hm∗v=v∗(1second)λ=hm∗v=v∗(1second)

Now solve for v

v2=hm∗1second" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">v2=hm∗1secondv2=hm∗1second

v=hm∗1second" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">v=hm∗1second−−−−−−−√v=hm∗1second

Let’s substitute everything with SI units (meters, kilograms, seconds, etc.)

Planck’s constant:h=6.626∗10−34Js" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">h=6.626∗10−34Jsh=6.626∗10−34Js

mass of an electron: 9.109∗10−31kg" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">9.109∗10−31kg9.109∗10−31kg

so v=6.626∗10−34Js9.109∗10−31kg∗s=0.027m/s" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">v=6.626∗10−34Js9.109∗10−31kg∗s−−−−−−−−−−√=0.027m/sv=6.626∗10−34Js9.109∗10−31kg∗s=0.027m/s

Or 2.7 centimeters per second, or 0.06 miles per hour.

Similar questions