Math, asked by nik2898, 10 months ago

how get the answer with explanation??​

Attachments:

Answers

Answered by Anonymous
3

Solution:-

Given:-

  \to\rm \:  \cos( \alpha  +  \beta )  =  \frac{4}{5}

 \to  \rm\sin( \alpha  -  \beta )  =  \frac{5}{13}

To find

 \rm \: value \:  \: of \:  \:  \tan(2 \alpha )

We can write as

  \tan( \alpha  +  \beta  +  \alpha  -  \beta )

Take

\to\rm \:  \cos( \alpha  +  \beta )  =  \frac{4}{5}  =  \frac{b}{h}

 \rm \: b = 4 \:  \:  \: h \:  = 5 \:  \: and \: p = x

Using pythagoras theorem to find

 \rm \:  {h}^{2}  =  {b}^{2}  +  {p}^{2}

 \rm \: 25 = 16 +  {p}^{2}

 \rm \: p {}^{2}  = 9

 \rm \: p = 3

We get

 \rm \: b = 4 \:  \:  \: h \:  = 5 \:  \: and \: p = 3

So

 \rm  \tan( \alpha  +  \beta  )  =  \frac{3}{4}  =  \frac{p}{b}

Now take

  \rm\sin( \alpha  -  \beta )  =  \frac{5}{13}  =  \frac{p}{h}

 \rm \: p \:  = 5 \:  \:  \: h = 13 \:  \:  \: and \:  \: b = x

Using pythagoras theorem to find

  \rm{h}^{2}  =  {p}^{2}  +  {b}^{2}

 \rm {13}^{2}  =  {5}^{2}  +  {b}^{2}

 \rm \: 169 = 25 +  {b}^{2}

 \rm  {b}^{2}  = 144

 \rm \: b = 12

 \rm \: p \:  = 5 \:  \:  \: h = 13 \:  \:  \: and \:  \: b = 12

Now

 \rm \:  \tan( \alpha  -  \beta )  =  \frac{5}{12}  =  \frac{p}{b}

so

 \tan( \alpha  +  \beta  +  \alpha  -  \beta )

Formula

 \rm \tan(a + b)  =  \frac{ \tan(a)  +  \tan(b) }{1 -  \tan(a) \tan(b)  }

Put the value on formual

 \rm \:  \frac{ \frac{3}{4}  +  \frac{5}{12} }{1 -  \frac{3}{4} \times  \frac{5}{12}  }

Taking lcm

 \rm \:  \frac{ \frac{14}{12} }{1 -  \frac{15}{48} }

  \rm \:  \frac{ \frac{14}{12} }{ \frac{33}{48} }

 \rm \:  \frac{14}{12}  \times  \frac{48}{33}

 \rm \:  \frac{14 \times 4}{33}

 \to \rm \:  \frac{56}{33}

Answer:- option A is correct

Similar questions