How have paleontologists contributed to humans' understanding of the history of life? Check all that apply.
Answers
Answer:
Throughout human history, fossils have been used, studied, and understood in different ways. Early civilizations used fossils for decorative or religious purposes, but did not always understand where they came from.
Although some ancient Greek and Roman scientists recognized that fossils were the remains of life forms, many early scholars believed fossils were evidence of mythological creatures such as dragons. From the Middle Ages until the early 1700s, fossils were widely regarded as works of the devil or of a higher power. Many people believed the remains had special curative or destructive powers. Many scholars also believed that fossils were remains left by Noah's flood and other biblical disasters.
Some ancient scientists did understand what fossils were, and were able to formulate complex hypotheses based on fossil evidence. Greek biologist Xenophanes discovered seashells on land, and deduced that the land was once a seafloor. Remarkably, Chinese scientist Shen Kuo was able to use fossilized bamboo to form a theory of climate change.
The formal science of paleontology—fossil collection and description—began in the 1700s, a period of time known as the Age of Enlightenment. Scientists began to describe and map rock formations and classify fossils. Geologists discovered that rock layers were the product of long periods of sediment buildup, rather than the result of single events or catastrophes. In the early 1800s, Georges Cuvier and William Smith, considered the pioneers of paleontology, found that rock layers in different areas could be compared and matched on the basis of their fossils.
Later that century, the works of Charles Lyell and Charles Darwin strongly influenced how society understood the history of Earth and its organisms. Lyell’s Principles of Geology stated that the fossils in one rock layer were similar, but fossils in other rock layers were different. This sequence could be used to show relationships between similar rock layers separated by great distances. Fossils discovered in South America may have more in common with fossils from Africa than fossils from different rock layers nearby.
Darwin’s On The Origin of Species observed somewhat similar sequencing in the living world. Darwin suggested that new species evolve over time. New fossil discoveries supported Darwin’s theory that creatures living in the distant past were different from, yet sometimes interconnected with, those living today. This theory allowed paleontologists to study living organisms for clues to understanding fossil evidence. The Archaeopteryx, for example, had wings like a bird, but had other features (such as teeth) typical of a type of dinosaur called a theropod. Now regarded as a very early bird, Archaeopteryx retains more similarities to theropods than does any modern bird. Studying the physical features of Archaeopteryx is an example of how paleontologists and other scientists establish a sequence, or ordering, of when one species evolved relative to another.
The dating of rock layers and fossils was revolutionized after the discovery of radioactivity in the late 1800s. Using a process known as radiometric dating, scientists can determine the age of a rock layer by examining how certain atoms in the rock have changed since the rock formed. As atoms change, they emit different levels of radioactivity. Changes in radioactivity are standard and can be accurately measured in units of time.
By measuring radioactive material in an ancient sample and comparing it to a current sample, scientists can calculate how much time has passed. Radiometric dating allows ages to be assigned to rock layers, which can then be used to determine the ages of fossils.
Paleontologists used radiometric dating to study the fossilized eggshells of Genyornis, an extinct bird from Australia. They discovered that Genyornis became extinct between 40,000 and 50,000 years ago. Fossil evidence from plants and other organisms in the region shows that there was abundant food for the large, flightless bird at the time of its extinction. Climate changes were too slow to explain the relatively quick extinction.
By studying human fossils and ancient Australian cave paintings that were dated to the same time period, paleontologists hypothesized that human beings—the earliest people to inhabit Australia—may have contributed to the extinction of Genyornis.
Explanation: