Physics, asked by 9466978714v, 1 year ago

How is destructive distillation of coal carried out? What are the products obtained and their main uses

Answers

Answered by Meghanath777
6
Destructive distillation is the chemical process of the decomposition of unprocessed material by heating it to a high temperature; the term generally applies to processing of organic material in the absence of air or in the presence of limited amounts of oxygen or other reagents, catalysts, or solvents, such as steam or phenols. It is an application of pyrolysis. The process breaks up or 'cracks'large molecules. Coke, coal gas, gas carbon, coal tar, ammonia liquor, and "coal oil" are examples of commercial products historically produced by the destructive distillation of coal.



Many early experiments used retorts for destructive distillation.

Destructive distillation of any particular inorganic feedstock produces only a small range of products as a rule, but destructive distillation of organic materials commonly produces very many compounds, often hundreds, although not all products of any particular process are of commercial importance. The distillate are generally lower molecular weight. Some fractions however polymerise or condense small molecules into larger molecules, including heat-stable tarrysubstances and chars. Cracking feedstocks into liquid and volatile compounds, and polymerising, or the forming of chars and solids, may both occur in the same process, and any class of the products might be of commercial interest.

Currently the major industrial application of destructive distillation is to coal.[1][2]

Historically the process of destructive distillation and other forms of pyrolysis led to the discovery of many chemical compounds or elucidation of their structures before contemporary organic chemists had developed the processes to synthesise or specifically investigate the parent molecules. It was especially in the early days that investigation of the products of destructive distillation, like those of other destructive processes, played parts in enabling chemists to deduce the chemical nature of many natural materials.[3] Well known examples include the deduction of the structures of pyranoses and furanoses.[4

Similar questions