How is impulse related to linear momentum
Answers
Momentum is proportional to both mass and velocity, meaning that a change in any of mass and velocity will change momentum. ... The change inmomentum is called Impulse and its given by force multiplied by the time for which it acts. If you change the force or the time interval,Impulsechanges.
Impulse
These concepts are merely an outgrowth of Newton's second law as discussed in an earlier unit. Newton's second law (Fnet = m • a) stated that the acceleration of an object is directly proportional to the net force acting upon the object and inversely proportional to the mass of the object. When combined with the definition of acceleration (a = change in velocity / time), the following equalities result.
F = m • a
or
F = m • ∆v / t
If both sides of the above equation are multiplied by the quantity t, a new equation results.
F • t = m • ∆v
This equation represents one of two primary principles to be used in the analysis of collisions during this unit. To truly understand the equation, it is important to understand its meaning in words. In words, it could be said that the force times the time equals the mass times the change in velocity. In physics, the quantity Force • time is known as impulse. And since the quantity m•v is the momentum, the quantity m•Δv must be the change in momentum. The equation really says that the
Impulse = Change in momentum
One focus of this unit is to understand the physics of collisions. The physics of collisions are governed by the laws of momentum; and the first law that we discuss in this unit is expressed in the above equation. The equation is known as the impulse-momentum change equation. The law can be expressed this way:
In a collision, an object experiences a force for a specific amount of time that results in a change in momentum. The result of the force acting for the given amount of time is that the object's mass either speeds up or slows down (or changes direction). The impulse experienced by the object equals the change in momentum of the object. In equation form, F • t = m • Δ v.