how is the pascal triangle related to the fibonacci numbers with examples(100 words)
Answers
Answered by
0
Answer:
See the following diagram for what does this question mean.
Let Fibonacci number be Fn=Fn−1+Fn−2 , where F0=1,F1=1 .
Need to show ∑⌊n2⌋k=0(n−kn−2k)=Fn .
Use induction method.
When n=0 , ∑⌊n2⌋k=0(n−kn−2k)=(00)=F0 ; when n=1 , ∑⌊n2⌋k=0(n−kn−2k)=(11)=F1 .
When n is even,
Fn−2+Fn−1=∑n−22k=0(n−2−kn−2−2k)+∑n−22k=0(n−1−kn−1−2k)=
(n−1n−1)+∑n2−1k=1((n−1−kn−2k)+(n−1−kn−1−2k))+(n−220)=
(nn)+∑n2−1k=1(n−kn−2k)+(n20)= ∑n2k=0(n−kn−2k)=
∑⌊n2⌋k=0(n−kn−2k)=Fn
When n is odd,
Fn−2+Fn−1=∑n−12−1k=0(n−2−kn−2−2k)+∑n−12k=0(n−1−kn−1−2k)=
(n−1n−1)+∑n−12k=1((n−1−kn−2k)+(n−1−kn−1−2k))=
(nn)+∑n−12k=1(n−kn−2k)= ∑n−12k=0(n−kn−2k)=
∑⌊n2⌋k=0(n−kn−2k)=Fn
Similar questions