How many 3 metre cubes can be cut from a cuboid of
dimension 10 m. X 12 m. X 9 ni.
3
Solution Volume of cube =
(1)
3
Volume of cuboid = m
(II)
Number of cubes = volume of cuboid – volume of cube
m
D
Answers
Answer:
Given :
Side of Cube = 3 m .
Length , Breadth and Height of a Cuboid are 10 m , 12 m and 9 m respectively .
To Find :
Cubes that can be cut from the cuboid .
Solution :
Firstly we'll find the Volume of Cube :
Using Formula :
\longmapsto\tt\boxed{Volume\:of\:Cube={a}^{3}}⟼VolumeofCube=a3
Putting Values :
\longmapsto\tt{{3}^{3}}⟼33
\longmapsto\tt\bf{27\:{m}^{3}}⟼27m3
For Cuboid :
Length = 10 m
Breadth = 12 m
Height = 9 m
Using Formula :
\longmapsto\tt\boxed{Volume\:of\:Cuboid=l\times{b}\times{h}}⟼VolumeofCuboid=l×b×h
Putting Values :
\longmapsto\tt{10\times{12}\times{9}}⟼10×12×9
\longmapsto\tt{120\times{9}}⟼120×9
\longmapsto\tt\bf{1080\:{m}^{3}}⟼1080m3
Now ,
For number of cubes :
\longmapsto\tt{\dfrac{Volume\:of\:Cuboid}{Volume\:of\:Cube}}⟼VolumeofCubeVolumeofCuboid
\longmapsto\tt{\cancel\dfrac{1080}{27}}⟼271080
\longmapsto\tt\bf{40}⟼40
___________________
L.S.A of Cuboid = 2h(l+b)
Surface Area of Cuboid = 2(lb+bh+hl)
Volume of Cuboid = l×b×h
L.S.A of Cube = 4a² ( a = side of cube)
T.S.A of Cube = 6a²
Volume of Cube = a³