How many arrangements can be made out of the letters of the word `INTERFERENCE’
so that no two consonant are together?
(a) 360 (b) 240 (c) 840 (d) 20
(b) 240 is Correct Answer
Please Give Full Explaination & Solution
Attachments:
Answers
Answered by
2
Answer:
just count consonant and vowel in the word
vowel 5
consonant 7
then how can you arrange then that no consonant together
example-- : ) ineterefe (nr)
the alphabet within the bracket are both consonant no word can be formed as per the given cases
so answer of your question is none
Similar questions