Biology, asked by arunvarma7069, 1 year ago

How many base pairs and genes does each of the human chromosomes and mitochondria have? 

Name and briefly describe one disease that is associated with each. 

Answers

Answered by Anonymous
0
haploid content of human DNA is 3.3*10^9 base pairs

Anonymous: dnt knw
Anonymous: I think we chatted yestrday na
arunvarma7069: yea
Anonymous: haha
arunvarma7069: yes
Anonymous: do u hav another profile?
arunvarma7069: no
Anonymous: do u hav any other doubts in bio?
Arunvarma: no
arunvarma7069: hello
Answered by manasvikakuste
0
Genetics is the scientific study of inherited variation. Human genetics, then, is the scientific study of inherited human variation.

Why study human genetics? One reason is simply an interest in better understanding ourselves. As a branch of genetics, human genetics concerns itself with what most of us consider to be the most interesting species on earth: Homo sapiens. But our interest in human genetics does not stop at the boundaries of the species, for what we learn about human genetic variation and its sources and transmission inevitably contributes to our understanding of genetics in general, just as the study of variation in other species informs our understanding of our own.

A second reason for studying human genetics is its practical value for human welfare. In this sense, human genetics is more an applied science than a fundamental science. One benefit of studying human genetic variation is the discovery and description of the genetic contribution to many human diseases. This is an increasingly powerful motivation in light of our growing understanding of the contribution that genes make to the development of diseases such as cancer, heart disease, and diabetes. In fact, society has been willing in the past and continues to be willing to pay significant amounts of money for research in this area, primarily because of its perception that such study has enormous potential to improve human health. This perception, and its realization in the discoveries of the past 20 years, have led to a marked increase in the number of people and organizations involved in human genetics.

This second reason for studying human genetics is related to the first. The desire to develop medical practices that can alleviate the suffering associated with human disease has provided strong support to basic research. Many basic biological phenomena have been discovered and described during the course of investigations into particular disease conditions. A classic example is the knowledge about human sex chromosomes that was gained through the study of patients with sex chromosome abnormalities. A more current example is our rapidly increasing understanding of the mechanisms that regulate cell growth and reproduction, understanding that we have gained primarily through a study of genes that, when mutated, increase the risk of cancer.

Likewise, the results of basic research inform and stimulate research into human disease. For example, the development of recombinant DNA techniques (Figure 3) rapidly transformed the study of human genetics, ultimately allowing scientists to study the detailed structure and functions of individual human genes, as well as to manipulate these genes in a variety of previously unimaginable ways.
Similar questions