Math, asked by rsagnik43, 3 days ago

how many bricks of 20 CM length 10 cm breadth 4 cm height are required to make a cube whose each side is 2 metre?​

Answers

Answered by lalnunkimahmarjoute
0

80000

Step-by-step explanation:

Dimensions of brick = 20cm, 10cm, 4cm

. (length)(breadth)(height)

Side of cube, a = 2m = 200cm

Volume of brick = l × b × h

. = 20cm × 10cm × 4cm

. = 800cm³

Volume of cube = a³

. = (200cm)³

. = 8000000cm³

\frac{Number \:  of \:  bricks  \: required}{} = \frac{Volume of cube}{Volume of brick}

 =  \frac{8000000c {m}^{3} }{800c {m}^{3} }

 = 10000

Answered by Anonymous
6

\red{Given,}

\green{→}\orange{Length \: of \: the \: brick  = 20 \: cm}

 \pink{→} \blue{ Breadth \: of \: the \: brick = 10 \: cm}

\green {→} \orange{ Height \: of \: the \: brick = 4 \: cm}

\pink {→} \blue{Side \: of \: the \: cube = 2 \: cm}

\red {To \: Find,}

\blue{➢} \green {Number \: of \: bricks \: required \: to \: make \: the \: cube \: whose \: each \: side \: is \: 2m}

\red {Required \: Solution,}

\pink {Firstly,\: let's \: find \: the \: volume \: of \: the \: brick}

 \red ✪\blue { \: Volume \: of \: the \: brick = Length \times Breadth \times Height}

 \red↪\blue {(20 \times 10 \times 4) \:  {cm}^{3}}

 \red↪ \blue{800 \:  {cm}^{3} }

 \green{Thus,\: we \: got \: volume \: of \: 1 \: brick \: as \: 800 \:  {cm}^{3} }

 \red{Now,\: let's \: find \: the \: volume \: of \: the \: cube}

 \blue{We \: can \: see \: that \: the \: side \: of \: the \: cube \: is \: given \: in \: m}

 \pink{So, \: firstly \: let's \: convert \: the \: side \: of \: the \: cube \: from \: m \: to \: cm} \red{We \: Know,}

 \green {1m = 100 \: cm}

 \pink {2m = (100 \times 2) \: cm}

 \pink {2m = 200 \: cm}

 \red {Thus, \: side \: of \: the \: cube \: is \: 200 \: cm}

\blue{Volume \: of \: the \: cube = ({side}^{3})}

\blue{{(200)}^{3} \:  = 8000000  \: {cm}^{3}}

 \red ✏ \green {Hence, \: we \: got \: volume \: of \: the \: cube \: as \: 8000000 \:  {cm}^{3}}

\orange {Now,\: number \: of \: bricks \: required}

 \green {\frac{Volume \: of \: the \: cube}{Volume \: of \: the \: brick}  = Brick \: number}

\blue ↪ \green {\frac{8000000}{800}  = Brick \: number}

\blue↪\green {10000 \: Bricks}

\pink {Thus,\: the \: required \: number \: of \: bricks \: are \: 10000}

Similar questions