Math, asked by Ghaywat, 1 year ago

How many bricks of dimensions 22cm x 10cm x 7cm are required to construct a wall 33m long, 3.5m high, and 40cm thick, if cement and sand used in construction occupy 1/10 of the wall.

Answers

Answered by rowboatontario
44

The number of bricks required is 27,000.

Step-by-step explanation:

We have to find the number of bricks of dimensions 22 cm x 10 cm x 7 cm required to construct a wall 33 m long, 3.5 m high, and 40 cm thick if cement and sand used in construction occupy (1/10) of the wall.

As we know that the volume of the cuboid is given by = Length \times Breadth \times Height.

So, the volume of the wall = 33 m \times 3.5 m \times 40 cm

                                            = (33 \times 100) cm \times (3.5 \times 100) cm \times 40 cm

                                            = 3300 cm \times 350 cm \times 40 cm

                                            = 46200000 \text{cm}^{3}.

Now, it is stated that the cement and sand used in construction occupy (1/10) of the wall.

So, the actual volume of the wall = Volume of the wall - ( \frac{1}{10} \times Volume of the wall)

                              = 46200000 - (\frac{1}{10} \times 46200000)

                              = 46200000 - 4620000

                              = 41580000 \text{cm}^{3}

Now, the volume of one brick = 22 cm \times 10 cm \times 7 cm

                                                  = 1540 \text{cm}^{3}

So, the number of bricks required = \frac{\text{Actual volume of wall}}{\text{Volume of one brick}}

                                                         = \frac{41580000}{1540}

                                                         = 27,000 bricks.

Hence, the number of bricks required is 27,000.

Similar questions