Math, asked by gladson13, 11 months ago

how many cubes of sides 6 m can be cut from a cubic measuring 18m ×15m×8m​

Answers

Answered by Brâiñlynêha
6

\huge\mathbb{SOLUTION:-}

  • Given that the side of cube =6m
  • And cuboid dimensions
  • 18m×15m×8

We have to find how many cubes can be cutted from cuboidal box

\boxed{\sf{Volume\:of\:cube=side{}^{3}}}

\boxed{\sf{Volume\:of\:cuboid=l\times b\times h}}

  • First find the volume of cube

\bf\underline{According\:To\: Question:-}

\sf \implies Volume\:of\:cube=(6){}^{3}\\ \\ \sf\implies Volume =216m{}^{3}

  • Now the volume of cuboid

\sf\implies Volume\:of\:cuboid=18\times 15\times 8\\ \\ \sf\implies Volume=18\times 120\\ \\ \sf\implies Volume=2160m{}^{3}

  • We have to find the number of cubes that cutted from cuboid

\boxed{\sf{No.\:of\:cubes=\frac{Volume\:of\:cuboid}{Volume\:of\:cube}}}

\sf\implies No.\:of\:cubes=\cancel{\frac{2160}{216}}\\ \\ \sf\implies No.\:of \:cubes=10

  • 10 cubes cutter from cuboidal box

\underline{\boxed{\sf{\purple{Number\:of\:cubes=10}}}}

Answered by shivambaghel006
0

Step-by-step explanation:

SOLUTION:−

Given that the side of cube =6m

And cuboid dimensions

18m×15m×8

We have to find how many cubes can be cutted from cuboidal box

\boxed{\sf{Volume\:of\:cube=side{}^{3}}}Volumeofcube=side3

\boxed{\sf{Volume\:of\:cuboid=l\times b\times h}}Volumeofcuboid=l×b×h

First find the volume of cube

\bf\underline{According\:To\: Question:-}AccordingToQuestion:−

\begin{gathered}\sf \implies Volume\:of\:cube=(6){}^{3}\\ \\ \sf\implies Volume =216m{}^{3}\end{gathered}⟹Volumeofcube=(6)3⟹Volume=216m3

Now the volume of cuboid

\begin{gathered}\sf\implies Volume\:of\:cuboid=18\times 15\times 8\\ \\ \sf\implies Volume=18\times 120\\ \\ \sf\implies Volume=2160m{}^{3}\end{gathered}⟹Volumeofcuboid=18×15×8⟹Volume=18×120⟹Volume=2160m3

We have to find the number of cubes that cutted from cuboid

\boxed{\sf{No.\:of\:cubes=\frac{Volume\:of\:cuboid}{Volume\:of\:cube}}}No.ofcubes=VolumeofcubeVolumeofcuboid

\begin{gathered}\sf\implies No.\:of\:cubes=\cancel{\frac{2160}{216}}\\ \\ \sf\implies No.\:of \:cubes=10\end{gathered}⟹No.ofcubes=2162160⟹No.ofcubes=10

10 cubes cutter from cuboidal box

\underline{\boxed{\sf{\purple{Number\:of\:cubes=10}}}}Numberofcubes=10

Similar questions