Physics, asked by Anonymous, 2 months ago

How many degrees of freedom are associated with 2 grams of helium at NTP? Calculate the amount of heat energy required to raise the temp. of this amount from 27°C to 127°C. Given Boltzmann constant, kB = 1.38 × 10^-16 erg molecule^-1 K^-1 and Avogadro's number = 6.02 × 10^23.​

Answers

Answered by Mysteryboy01
2

✧═════════════•❁❀❁•══════════════✧\huge\color{Pink}\boxed{\colorbox{Black}{❥Mysteryboy01}}

✧═════════════•❁❀❁•══════════════✧

\huge\mathscr\red{♡Hello Friend ♡}

\huge\rm\underline\purple{❤Good Afternoon ❤ }

\huge\star\huge{ \pink{\bold {\underline {\underline {\red {Great Day }}}}}} \star

\huge\blue\bigstar\pink{Be Safe Always }

\huge\pink{Stay Home }

 \huge\star\underline{\mathtt\orange{❥Q} \mathfrak\blue{u }\mathfrak\blue{E} \mathbb\purple{ s}\mathtt\orange{T} \mathbb\pink{iOn}}\star\:

The Question is Give below

\huge \mathbb{ \red {★᭄ꦿ᭄A} \pink{n}\purple{s} \blue {w} \orange{e} \green{r★᭄ꦿ᭄}}

As , He is monotomic, each molecule has three degree of freedom. U=U2-U1=2492.3-1869.2=623.1joule

\huge\mathscr\red{♡Adrobale Boy ♡}

\huge\blue\bigstar\pink{Mark as Brainlist}

Answered by Anonymous
3

Given :

  • Mass of helium = 2 gram
  • Botzmann constant,  \sf k_B = 1.38 \times 10^{-16}\: erg \:molecule^{-1} K^{-1}
  • Avogadro's number = 6.02 × 10²³

To Find :

The amount of heat energy required to raise the temp. of this amount from 27°C to 127°C = ?

Solution :

We have :

  • Mass of helium = 2 gram

We know that, Atomic weight of helium = 4

So, number of atoms in 2 gram =  \sf \dfrac{6.02 \times 10^{23} \times 2}{4} = 3.01 \times 10^{23}

As, Helium is monoatomic, each molecule has three degrees of freedom.

Hence, Total no. of degrees of freedom = 3 × 3.01 × 10²³ = 9.03 × 10²³

As, energy associated with one degree of freedom per molecule =  \sf \dfrac{1}{2}k_B T

Hence, At T₁ = 27°C (300K), heat content of gas :

 \sf U_1  = 9.03 \times 10^{23}  \times  \dfrac{1}{2} k_B T_1 \\  \sf =9.03 \times 10^{23}  \times  \dfrac{1}{2} \times  1.38 \times 10^{ - 23}  \times 300J \\  \sf = 1869.2J

Similarly, At T₂ = 127°C (400K), heat content of gas :

 \sf U_2  = 9.03 \times 10^{23}  \times  \dfrac{1}{2} k_B T_1 \\  \sf =9.03 \times 10^{23}  \times  \dfrac{1}{2} \times  1.38 \times 10^{ - 23}  \times 400J \\  \sf = 2492.3J

Hence, energy required to raise the temp. of gas from 27°C to 127°C is :

 \sf U = U_2 - U_1 = 2492.3J - 1869.2J = 623.1J

  \pink{ \underline{\bf Hence,  \: Answer \:  is \:  623.1 J}}

Similar questions