Math, asked by Arundhati2004, 6 months ago

how many diagonals can be drawn by joining the angular points of a heptagon ​

Answers

Answered by mrcheese95
0

Answer

You may directly apply the formula to find out the number of diagonals.

For any n- sided convex polygon, the number of diagonals = n(n-3)/2

Where, n = number of sides or vertices

Triangle = 3(3–3)/2 = 0 diagonal

Quadrilateral = 4(4–3)/2 = 2 diagonals

Pentagon = 5(5–3)/2 = 5 diagonals

Hexagon = 6(6–3)/2 = 9 diagonals

Similarly,

Hectogon (Polygon with 100 sides) = 100(100–3)/2 = 4850 diagonals

Answered by phaneeshamk
0

Answer:

Step-by-step explanation:

What is the number of diagonals which can be drawn by joining the angular points of a polygon of 100 sides?

Pass PMP exam in the 1st attempt. Pay us only after you pass.

You may directly apply the formula to find out the number of diagonals.

For any n- sided convex polygon, the number of diagonals = n(n-3)/2

Where, n = number of sides or vertices

Triangle = 3(3–3)/2 = 0 diagonal

Quadrilateral = 4(4–3)/2 = 2 diagonals

Pentagon = 5(5–3)/2 = 5 diagonals

Hexagon = 6(6–3)/2 = 9 diagonals

Similarly,

Hectogon (Polygon with 100 sides) = 100(100–3)/2 = 4850 diagonals

Similar questions