Math, asked by anyyasharma, 5 months ago

How many different numbers of 7 digit(without repetition of digit)can be formed from the digits

2,1,8,0,9,6,5?How many of them will have 0 in the unit’s place?​

Answers

Answered by PharohX
3

Answer:

 \large \green{ \underline{ \sf \: Solution  : - }}

 \sf \: total \: no. \: of \: ways \:  = 6 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1

 \sf \:  = 4320 \: ways

 \sf \: Alternatively \: 7 ! - 6 ! = 4320 \: ways

 \sf \:  \green{When \:  zero \:  is \:  in \:  unit \:  place}

 \sf \: no \: of \: ways \:  = 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 1 \\   \sf= 720

 \sf \: because \: zero \: is \: in \: unit \: place \: then \: it \: is \: fixed \: so \: it \: will \: be \: chosen \: by \: 1 \: ways..

 \sf \: and \: rest \: 6 \: digits \: in \: 6 \: ways

Answered by adityabhadouriya38
0

totalno.ofways=6×6×5×4×3×2×1

\sf \: = 4320 \: ways=4320ways

\sf \: Alternatively \: 7 ! - 6 ! = 4320 \: waysAlternatively7!−6!=4320ways

\sf \: \green{When \: zero \: is \: in \: unit \: place}Whenzeroisinunitplace

\begin{gathered} \sf \: no \: of \: ways \: = 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 1 \\ \sf= 720\end{gathered}

noofways=6×5×4×3×2×1×1

=720

\sf \: because \: zero \: is \: in \: unit \: place \: then \: it \: is \: fixed \: so \: it \: will \: be \: chosen \: by \: 1 \: ways..becausezeroisinunitplacethenitisfixedsoitwillbechosenby1ways..

\sf \: and \: rest \: 6 \: digits \: in \: 6 \: waysandrest6digitsin6ways

Similar questions