Math, asked by Skumarsksk7393, 1 year ago

How many different ways can 10 letters be posted in 5 post boxes?

Answers

Answered by jitekumar4201
0

Answer:

10 letters can be posted in 5 post boxes by 1260 ways.                                              

Step-by-step explanation:

Given that-

Numbers of letter = 10

Numbers of post boxes = 5

10 letters can be posted in 5 post boxes by = nC_{r}

                                                                         = \dfrac{n!}{r1(n-r)!} }

Where n = number of letters

r = number of post boxes

So, the different ways to post letters = 10C_{5}

                                                             = \dfrac{n!}{r1(n-r)!} }

                                                             = \dfrac{10!}{5!(10-5)!}

                                                             = \dfrac{10!}{5! \times5!}

  = \dfrac{10 \times9 \times8 \times7 \times6 \times5!}{5! \times5!}

  = \dfrac{10 \times9 \times8 \times7 \times6 \times5 }{5 \times 4\times 3\times 2\times 1}

= \dfrac{151200}{120}

= 1260

Hence, 10 letters can be posted in 5 post boxes by 1260 ways.                                              

Similar questions