Math, asked by Anonymous, 1 year ago

How many digits are there in the expression -
 {6}^{2}  \times  {2}^{98}  \times  {5}^{99}
NO SPAMMERS ALLOWED !
♈5 points only♈​

Answers

Answered by BrainlyWriter
12

\Large\bold{\underline{\underline{Answer:-}}}

\Large\bold{\boxed{\boxed{ 101 \:digits}}}

\rule{200}{4}

\bf\small\bold{\underline{\underline{Step-By-Step\:Explanation:-}}}

\bf\bold{6^2 \times2^{98} \times 5^{99} }

Breaking \bf\bold{5^{99} \longrightarrow 5^{98+1} }

\bf\bold{\Rightarrow 6^2 \times2^{98} \times 5^{98+1} }

We got

\bf\bold{\Rightarrow6^2 \times2^{98} \times 5^{98}\times 5^1}

\bf\bold{\Rightarrow6^2 \times(2 \times 5) ^{98}\times5}

\bf\bold{\Rightarrow 36\times 5 \times(2 \times 5) ^{98}}

\bf\bold{\Rightarrow 180 \times(10) ^{98}}

3 digits from 180  & 98 digits from 10⁹⁸

Therefore, 3 + 98 = 101

Hence, 101 digits are in the above expression

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Concept: -

\bf\bold{a^{(m+n) } = a^m \times a^n }

Answered by Blaezii
20

Answer:

There are total 101 digits in -

{6}^{2}\times {2}^{98}\times {5}^{99}

Step-by-step explanation :

Given :

{6}^{2}\times {2}^{98}\times {5}^{99}

To Find :

Number of digits in the given expression.

Solution :

\sf \\\implies 6^2\times2^{98}\times5^{99}\\ \\\implies 6^2\times2^{98}\times5^{98+1}\\ \\\implies 6^2\times2^{98}\times5^{98}\times5^1\\ \\\implies 6^2\times5^1\times(2\times5)^{98}\\ \\\implies 36\times5\times(10)^{98}\\ \\\implies 180\times(10)^{98}

After Simplifying,

You will got the Total number of digits in the expression is 101.

\rule{300}{1.5}

Things to Remember -

In this Question you can also do -

{5^{99}\rightarrow 5^{98+1}}

Laws of Exponents :

\implies \sf x^m \times x^n = x^{m-n}\\ \\\implies \sf x^n \times y^n = (x\times y)^n\\ \\\implies \sf x^n \div y^n = \left(\dfrac{x}{y}\right)^n

Similar questions