Physics, asked by abhisheksingh6033, 9 months ago

How many electrons must be removed from a piece of metal to give it a positive charge of 1.0×10-7C

Answers

Answered by Anonymous
8

  \mathtt { \huge{ \fbox{Solution :)}}}

Given ,

Charge (q) = 1.0 × (10)^-7 C

We know that ,

The charge on a body is integral multiple of electrons

 \large \mathtt{{ \fbox{Charge \: (q) = ne}}}

Thus ,

 \sf \hookrightarrow 1.0 \times  {(10)}^{ - 7}  = n \times 1.9 \times  {(10)}^{ - 19}  \\  \\ \sf \hookrightarrow n =  \frac{1.0 \times  {(10)}^{ - 7} }{1.9 \times  {(10)}^{ - 19} }  \\  \\ \sf \hookrightarrow n =  \frac{1 \times  {(10)}^{ (- 7 + 19 + 1 - 1)} }{19}  \\  \\  \sf \hookrightarrow n =  0.05 \times  {(10)}^{12} \\  \\  \sf \hookrightarrow n =  5 \times  {(10)}^{(12 - 2)}  \\  \\  \sf \hookrightarrow n =  5 \times  {(10)}^{10}

Hence , the number of electrons is 5 × (10)^10

______________ Keep Smiling

Answered by Anonymous
0

Answer:

Given ,

Charge (q) = 1.0 × (10)^-7 C

We know that ,

The charge on a body is integral multiple of electrons

\large \mathtt{{ \fbox{Charge \: (q) = ne}}}

Charge (q) = ne

Thus ,

\begin{gathered}\sf \hookrightarrow 1.0 \times {(10)}^{ - 7} = n \times 1.9 \times {(10)}^{ - 19} \\ \\ \sf \hookrightarrow n = \frac{1.0 \times {(10)}^{ - 7} }{1.9 \times {(10)}^{ - 19} } \\ \\ \sf \hookrightarrow n = \frac{1 \times {(10)}^{ (- 7 + 19 + 1 - 1)} }{19} \\ \\ \sf \hookrightarrow n = 0.05 \times {(10)}^{12} \\ \\ \sf \hookrightarrow n = 5 \times {(10)}^{(12 - 2)} \\ \\ \sf \hookrightarrow n = 5 \times {(10)}^{10}\end{gathered}

↪1.0×(10)

−7

=n×1.9×(10)

−19

↪n=

1.9×(10)

−19

1.0×(10)

−7

↪n=

19

1×(10)

(−7+19+1−1)

↪n=0.05×(10)

12

↪n=5×(10)

(12−2)

↪n=5×(10)

10

Hence , the number of electrons is 5 × (10)^10

Similar questions