Math, asked by pk4712103, 13 hours ago

How many factors are possible of 27x^3 - 1?​

Answers

Answered by preetiparadkar36
0

Answer:

(3x - 1) • (9x2 + 3x + 1)

Look down for explanation ^-^

Step-by-step explanation:

STEP  1 :

Equation at the end of step 1

 33x3 -  1

STEP  2 :

Trying to factor as a Difference of Cubes

2.1      Factoring:  27x3-1  

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into

             (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =

           a3+a2b+ab2-ba2-b2a-b3 =

           a3+(a2b-ba2)+(ab2-b2a)-b3 =

           a3+0+0+b3 =

           a3+b3

Check :  27  is the cube of  3  

Check :  1  is the cube of   1  

Check :  x3 is the cube of   x1

Factorization is :

            (3x - 1)  •  (9x2 + 3x + 1)  

Trying to factor by splitting the middle term

2.2     Factoring  9x2 + 3x + 1  

The first term is,  9x2  its coefficient is  9 .

The middle term is,  +3x  its coefficient is  3 .

The last term, "the constant", is  +1  

Step-1 : Multiply the coefficient of the first term by the constant   9 • 1 = 9  

Step-2 : Find two factors of  9  whose sum equals the coefficient of the middle term, which is   3 .

     -9    +    -1    =    -10  

     -3    +    -3    =    -6  

     -1    +    -9    =    -10  

     1    +    9    =    10  

     3    +    3    =    6  

     9    +    1    =    10  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Final result :

 (3x - 1) • (9x2 + 3x + 1)

Similar questions