Chemistry, asked by kennedydhar8070, 9 months ago

How many grams of NaOH will be need to make250ml of 1.5M solution

Answers

Answered by ShivamKashyap08
30

Answer:

  • 15 grams of NaOH will make a molarity of 1.5 M.

Given:

  • Volume of solution (V) = 250 ml.
  • Molarity of solution (M) = 1.5 M

Explanation:

\rule{300}{1.5}

From the Molarity formula we Know,

\large \bigstar \; {\boxed{\tt M = \dfrac{n}{V_{(In \; ml)}} \times 1000}}

\bold{Here}\begin{cases}\text{n Denotes Number of moles} \\ \text{V Denotes Volume (In ml)} \\ \text{M Denotes Molarity}\end{cases}

Now,

\large  {\boxed{\tt M = \dfrac{n}{V_{(In \; ml)}} \times 1000}}

Substituting the Values,

\longmapsto \large{\tt 1.5 \; M = \dfrac{n}{250 \; ml} \times 1000}

\longmapsto \large{\tt 1.5 = \dfrac{n}{250} \times 1000}

\longmapsto \large{\tt 1.5 = \dfrac{1000 \times n}{250}}

\longmapsto \large{\tt 1.5 = \cancel{\dfrac{1000 \times n}{250}}}

\longmapsto \large{\tt 1.5 = 4 \times n}

\longmapsto \large{\underline{\underline{\tt n = \dfrac{1.5}{4}}}}

\rule{300}{1.5}

\rule{300}{1.5}

From the Formula we Know,

\large \bigstar \; {\boxed{\tt n = \dfrac{w}{M}}}

\bold{Here}\begin{cases}\text{n Denotes Number of moles} \\ \text{W Denotes Weight} \\ \text{M Denotes Molar mass}\end{cases}

Now,

\large{\boxed{\tt n = \dfrac{w}{M}}}

Substituting the Values,

\longmapsto \large{\tt \dfrac{1.5}{4} = \dfrac{W}{40} \; \; \because \Big[\textsf{Molar mass $_{\sf (NaOH)}$ = 40 \;g} \Big]}

\longmapsto \large{\tt \dfrac{1.5}{4} \times 40 = W}

\longmapsto \large{\tt  W = \dfrac{1.5}{4} \times 40 }

\longmapsto \large{\tt  W = \dfrac{1.5 \times 40}{4}}

\longmapsto \large{\tt  W = \cancel{\dfrac{1.5 \times 40}{4}}}

\longmapsto \large{\tt  W = 1.5 \times 10}

\longmapsto\large{\underline{\boxed{\red{\tt W = 15 \; grams}}}}

The weight of the NaOH will be 15 grams.

\rule{300}{1.5}


Anonymous: Awesome
VishalSharma01: Nice Answer
BraɪnlyRoмan: Wondering :)
Answered by Anonymous
41

\huge\bold\green{Question}

How many grams of NaOH will be need to make250ml of 1.5M solution

\huge\bold\green{Answer}

\begin{lgathered}\bold\green{Given}\begin{cases}\text{Vol. of solution = 250 ml.} \\ \text{Molarity of solution = 1.5 M }\end{cases}\end{lgathered}

Hence , we have the molarity of the solution . So we know that

\tt\blue\implies{ M = \dfrac{n}{V_{(In \; ml)}} \times 1000}

  • n = Number of moles
  • V = Denotes Volume (In ml)
  • M = Denotes Molarity}

Hence ,

\tt\implies{ M = \dfrac{n}{V_{(In \; ml)}} \times 1000}

So , simply by subsituting the known values in formula we get

= \sf{ 1.5 \; M = \dfrac{n}{250 \; ml} \times 1000}

= \sf{ 1.5 = \dfrac{n}{250} \times 1000}

= \sf{ 1.5 = \dfrac{1000 \times n}{250}}

= \sf{ 1.5 = \cancel{\dfrac{1000 \times n}{250}}}

= \sf\blue{ 1.5 = 4 \times n}

Hence , from the above data and given formula we can conclude that :-

\sf\blue\implies{ n = \dfrac{w}{M}}

  • n = Number of moles
  • W = Weight
  • M = Molar mass

So , by using this formula and by subsituting the known values in formula we get :-

\sf{ \dfrac{1.5}{4} = \dfrac{W}{40} \; \; \because \Big[\textsf{Molar mass $_{\sf (NaOH)}$ = 40 \;g} \Big]}

= \sf{\dfrac{1.5}{4} \times 40 = W}

= \sf{ W = \dfrac{1.5}{4} \times 40 }

= \sf{ W = \dfrac{1.5 \times 40}{4}}

= \sf{ W = \dfrac{1.5 \times 40}{4}}

= \sf{ W = 1.5 \times 10}

Hence , the accurate weight of NaOH is 15 grams


Anonymous: Awesome
Rythm14: Nice! :D
VishalSharma01: Nice Answer
BraɪnlyRoмan: Keep it up :)
Similar questions