Math, asked by soniamaibam21, 10 months ago

how many lead shots each of radius 6cm can be made out of a rectangular slab of dimensions 44cm.24.cm.36m​

Answers

Answered by amitkumar44481
66

AnsWer :

42.

Correct QuestioN :

how many sphercal lead shots each of radius 6 cm can be made out of a rectangular slab of dimensions 44cm 24 cm 36cm.

SolutioN :

We know,

  • Volume of Sphere = 4 / 3 πr³.
  • Rectangular slab = 44 , 24 , 36.

Let,

  • Radius ( R )
  • Rectangular slab = L * B * H
  • No of lead shots formed be N.

 \tt \dagger \:  \:  \:  \:  \: Number \:  of \:  lead  \: shots  \: formed = \dfrac{ Volume \:  of  \: lead  \: Rectangular \: slab  }{ Volume \: of \: One \: sphere}

 \tt \longmapsto N= \dfrac{ 44 \times 24 \times 36 }{ \dfrac{4}{3}  \pi {r}^{3} }

  • Note : π = 22 / 7.
  • R = 6 cm.

 \tt \longmapsto N = \dfrac{ 44 \times 24 \times 36 }{ \dfrac{4}{3}   \times  \dfrac{22}{7}  \times  6 \times 6\times6 }

 \tt \longmapsto N = \dfrac{ 44 \times 24 \times  \cancel{36 }}{ \dfrac{4}{3}   \times  \dfrac{22}{7}  \times  \cancel 6 \times  \cancel6 \times 6 }

 \tt \longmapsto N = \dfrac{ 44 \times 24  \times 3 \times 7}{ {4} \times 6  \times  {22}}

 \tt \longmapsto N = \dfrac{  \cancel{44 }\times 24   \times 3 \times 7}{ {4}  \times 6 \times { \cancel{22}}}

 \tt \longmapsto N = \dfrac{  \cancel2 \times 24  \times 3 \times 7}{  \cancel{4}  \times 6 }

 \tt \longmapsto N = \dfrac{    \cancel{24}   \times 3 \times 7}{ 6 \times  \cancel2  }

 \tt \longmapsto N = 2 \times 3 \times 7.

 \tt \longmapsto N = 42.

Therefore, 42 lead shots can be made slab.


BrainIyMSDhoni: Great :)
Answered by Anonymous
76

Answer:

⋆ DIAGRAM :

\setlength{\unitlength}{0.60 cm}\begin{picture}(12,4)\linethickness{0.27mm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\qbezier(6,6)(4,7.3)(4,7.3)\qbezier(6,9)(4,10.2)(4,10.3)\qbezier(11,9)(9.5,10)(9,10.3)\qbezier(11,6)(10,6.6)(9,7.3)\put(8,5.5){\sf{44 cm}}\put(3.5,6.3){\sf{24 cm}}\put(11.2,7.5){\sf{36 cm}}\thicklines\put(14.5,7.5){\circle{40}}\put(14.5,7.5){\circle*{.1}}\put(14.5,7.5){\line(1,0){1.2}}\put(14.5,7){\scriptsize\sf 6 cm}\end{picture}

⠀⠀⠀\rule{160}{1}

⠀✩ Rectangular Slab of Cuboid Shape with ⠀⠀ dimensions 44 cm , 24 cm and 36 cm.

⠀✩ Lead Shot (Sphere) of radius 6 cm.

\underline{\boldsymbol{According\: to \:the\: Question :}}

:\implies\sf Vol.\:of\:Slab=Vol.\:of\:Shot \times Number\\\\\\:\implies\sf Vol.\:of\: Cuboid=Vol.\:of\: Sphere \times Number\\\\\\:\implies\sf L \times B \times H = \dfrac{4}{3}\pi r^3 \times Number\\\\\\:\implies\sf 44 \times 24 \times 36 = \dfrac{4}{3} \times \dfrac{22}{7} \times(6)^3 \times Number\\\\\\:\implies\sf \dfrac{44 \times 24 \times 36 \times 3 \times 7}{4 \times 22 \times 36 \times 6} = Number\\\\\\:\implies\sf Number =2 \times 3 \times 7\\\\\\:\implies\underline{\boxed{\sf Number = 42}}

\therefore\:\underline{\textsf{\textbf{42} lead shots can be made of slab}}.


BrainIyMSDhoni: Great :)
Similar questions