Math, asked by aarthibaldava9959722, 4 months ago

How many litres of milk can a hemispherical bowl of diameter 10.5 cm hold?

Answers

Answered by Anonymous
1

Step-by-step explanation:

Given data

diameter =10.5 cm

Volume of the bowl which is hemisphere =

3

2

πr

2

→(1)

where r→ radius

r=

2

d

=

2

10.5

=5.25 cm→(2)

Substituting (2) in (1)

V=

3

2

×

7

22

×5.25×5.25×5.25

=303.1875 cm

3

(π=

7

22

)

The answer must be converted into lives as it was asked to be calculated in litre

V=303.1875×

1000

1

litre

=0.3031875 litre

=0.303 litre (approx) [∴ 1 cm

3

=

1000

1

litre]

Hence, the hemispherical bowl can hold 0.303 litre.

Answered by Anonymous
1

Given :

\sf{}

Diameter (d) = 10.5 cm

\sf{}

To find :

\sf{}

Litres of milk the hemispherical bowl can hold

\sf{}

Formula used :

\sf{}

 \sf{Volume =  \dfrac{2}{3} \:  \pi \:  {r}^{3} }

\sf{}

Solution :

\sf{}

\sf{First \: , we \: have \: to \: find \: the \: radius,} \\ \sf{As \: we \: all \: know ,} \\  \\  \implies\sf{r =  \dfrac{d}{2} } \\ \\ \:  \:  \:  \:  \implies\sf{r =  \dfrac{10.5}{2} } \\  \\  \:  \:  \: \implies\sf{r =5.25 \: cm}

\sf{}

 \implies \sf{Volume \: of \: bowl =  \dfrac{2}{3}  \: \pi \:  {r}^{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\  \implies \sf{ \dfrac{2}{3} \times  \frac{22}{7}  \:  \times 5.25 \times 5.25 \times 5.25} \\  \\ \implies \sf{303.1875 \:  {cm}^{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \sf{303.1875 \times  \dfrac{1}{1000 \:} \: litres } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \sf{0.3031875 \: (litres)} \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ \implies \sf{0.303 \: litres \: (approximately)} \:  \:  \:  \\  \\ \sf{The \: hemispherical \: bowl \: can \: hold \: 0.303 \: litres.}

Similar questions