Math, asked by ja838682, 3 days ago

How many meters of clothes, 5m wide, will be required to make a conical tent, the radius of whose base is 7m and hight, H =24m.

content quality required ​

Answers

Answered by Anonymous
92

Given :

  • Width of cloth = 5 m
  • Radius of tent = 7 m
  • Height of tent = 24 m

 \\ \rule{200pt}{3pt}

To Find :

  • Length of cloth = ?

 \\ \rule{200pt}{3pt}

Solution :

~  {\underline{\pmb{\frak{ Formula \; Used \; :- }}}}

  •  {\underline{\boxed{\pink{\sf{ Curved \; Surface \; Area{\small_{(Cone)}} = \pi rl }}}}}

  •  {\underline{\boxed{\pink{\sf{ Total \; Area{\small_{(Rectangle)}} = Length \times Breadth }}}}}

Where :

  •  {\sf{ \pi = \dfrac{22}{7} }}

  • ➟ r = Radius
  • ➟ l = Slant Height

 \\ \qquad{\rule{150pt}{1pt}}

~  {\underline{\pmb{\frak{ Calculating \; the \; Slant \; Height \; :- }}}}

 {\longmapsto{\qquad{\sf{ {Slant \; Height}^{2} = {Radius}^{2} + {Height}^{2} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ {Slant \; Height}^{2} = {7}^{2} + {24}^{2} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ {Slant \; Height}^{2} = 49 + 576 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ {Slant \; Height}^{2} = 625 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Slant \; Height = \sqrt{625} }}}} \\ \\ \ {\qquad{\orange{\sf{ Slant \; Height \;  of \;  the \; tent = 25 \; m }}}}

 \\

~  {\underline{\pmb{\frak{ Calculating \; the \; Surface \; Area \; of \; Tent \; :- }}}}

 \begin{gathered} \implies \; \; \sf { Surface \; Area = \pi rl } \\ \end{gathered}

 \begin{gathered} \implies \; \; \sf { Surface \; Area = \dfrac{22}{7} \times 7 \times 25 } \\ \end{gathered}

 \begin{gathered} \implies \; \; \sf { Surface \; Area = \dfrac{22}{\cancel7} \times \cancel7 \times 25 } \\ \end{gathered}

 \begin{gathered} \implies \; \; \sf { Surface \; Area = 22 \times 25 } \\ \end{gathered}

 \begin{gathered} \implies \; \; {\qquad{\green{\sf{ Surface \; Area \; of \; Tent = 550 \; {m}^{2} }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~  {\underline{\pmb{\frak{ Calculating \; the \; Length \; of \; Cloth \; :- }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { Surface \; Area{\small_{(Tent)}} = Length \times Breadth } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { 550 = Length \times 5 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { \dfrac{550}{5} = Length  } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { \cancel\dfrac{550}{5} = Length  } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; {\qquad{\red{\sf{ Length \; of \; the \; Cloth = 110 \; m }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~  {\underline{\pmb{\frak{ Therefore \; :- }}}}

❛❛ Length of the cloth required is 110 m .❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by 231001ruchi
21

To Find :

Length of cloth = ?

\begin{gathered} \\ \rule{200pt}{3pt} \end{gathered}

Given :

Width of cloth = 5 mRadius of tent = 7 mHeight of tent = 24 m

\begin{gathered} \\ \rule{200pt}{3pt} \end{gathered}

Similar questions